992 機械系博士班資格考試題目

考試科目	方式		
流體力學	Closed Book,可使用計算機	Part 1	

GIVEN The velocity distribution for the flow of a Newtonian fluid between two wide, parallel plates) is given by the equation

where V is the mean velocity. The fluid has a viscosity of $2 \text{ N} \cdot \text{s/m}^2$. Also, V = 0.6 m/s and h = 5 mm.

(10%)

 $u = \frac{3V}{2} \left[1 - \left(\frac{y}{h} \right)^2 \right]$

FIND Determine: (a) the shearing stress acting on the bottom wall, and (b) the shearing stress acting on a plane parallel to the walls and passing through the centerline (midplane).

GIVEN Water at 15 °C ($\nu=1.12\times10^{-6}~\mathrm{m}^2/\mathrm{s}$) is to flow from reservoir A to reservoir B through a pipe of length 520 m and roughness $1.5\times10^{-4}~\mathrm{m}$ at a rate of $Q=1~\mathrm{m}^3/\mathrm{s}$ as shown in Fig. The system contains a sharp-edged entrance and four flanged 45° elbows.

FIND Determine the pipe diameter needed.

Kent = 0.5, Kelbow=0.2, Kexit = 1

Elevation $\mathbb{Z}_{2} = 13 \text{ m}$ $\begin{array}{c} \text{Total length} = 520 \text{ m} \\ \text{Elevation} \mathbb{Z}_{2} = 0 \\ \text{FIGURE} \end{array}$ $\begin{array}{c} \text{FIGURE} \\ \text{FIGURE} \end{array}$

& Colebrook eq.

$$\frac{1}{14} = -2.0 \log \left[\frac{\epsilon/D}{3.7} + \frac{2.51}{Re H} \right]$$

(10%)

Standard air enters a 0.3 m diameter duct. The volume flow rate is 2 m³/min. Determine whether the flow is laminar or turbulent. (Q=1.2 kg/m³) ($M=1.82 \times 10^{-5}$ M· Seconic M· Sec

4. Laminon Boundary Layer, Bkrsiys

Table The Function $f(\eta)$ for the Laminar Boundary Layer along a Flat Plate at Zero Incidence

The Little Walt Court Hall Filling The Property				
Equation, 24"+ 54"=0,	$\eta = y \sqrt{\frac{U}{vx}}$	f	$f' = \frac{u}{U}$	f"
efactor, 2 f f 1 1 f o)	ó	0	0	0.3321
· Alx — 1	0.5	0.0415	0.1659	0.3309
J= 10x1 , N=4.15x , +'= 4	1.0	0.1656	0.3298	0.3230
J-JUXLI, 1-3-1DX, TU	1.5	0.3701	0.4868	0.3026
1 11	2.0	0.6500	0.6298	0.2668
花、(素古) noitable 其屯	2.5	0.9963	0.7513	0.2174
299a	3.0	1.3968	0.8460	0.1614
① boundary layer thickness = 5,	3.5	1.8377	0.9130	0.1078
	4.0	2.3057	0.9555	0.0642
@ wall shoot stress = Tw,	4.5	2.7901	0.9795	0.0340
	5.0	3.2833	0.9915	0.0159
3 skin friction welficient = C+	5.5	3.7806	0.9969	0.0066
- 2 word LINGHON CONTRACTOR = ct	6.0	4.2796	0.9990	0.0024
@ dray = D,	6.5	4.7793	0.9997	0.0008
wo orage of	7.0	5.2792	0.9999	0.0002
图本科 红	7.5	5.7792	1.0000	0.0001
W 4 63 H,	8.0	6.2792	1.0000	0.0000

世中 小三 Stream function, D= Rinematic Viscosity) U= free Stream velocity, U= fluid velocity

(15%)

992 機械系博士班資格考試題目

考試科目	方式		
流體力學	Closed Book,可使用計算機	Part II	

(1) The stream function for a certain incompressible flow field is given by the equation

$$\psi = 2x^2y - \frac{2}{3}y^3$$

Show that the velocity field represented by this stream function satisfies the continuity equation. (15%)

- (2) The design of a river model is to be based on Froude number similarity, and a river depth of 3 m is to correspond to a model depth of 100 mm. Under these conditions what is the prototype velocity corresponding to a model velocity of 2 m/s? (20%)
- (3) Please describe how the doublet is formed. Also write down the derivation of the velocity potential and stream function for a doublet. (20%)