992 機械系博士班資格考試題目

考試科目	方式		
工程數學	Closed Book,不可使用計算機, 共9題採計6題	Part I	

Using the method of variation of parameters to solve the differential equation (17%)

$$y'' + y = \sec x$$

Find a solution of the following equation (17%)

$$y'' + 4y = x + 2e^{-2x}$$

Using the method of Laplace Transformation to solve the initial value problem of y(t) (17%)

$$y'' + 4y' + 3y = e^t$$
 with $y(0) = 0$, $\frac{dy}{dt}\Big|_{t=0} = 2$

992 機械系博士班資格考試題目

考試科目	方式	
工程數學	Closed Book,不可使用計算機, 共9題採計6題	Part II

$$- \cdot 若 \mathbf{A} = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$$

- (a) 找出 A 之所有 eigenvalues 及 eigenvectors。(6%)
- (b) 將 A 對角線化 (diagonalization)並驗證之。(5%)
- (c) 若 $B = A^{50} 4A^{20} + 5I$, 則 $B \ge$ eigenvalues and eigenvectors 為何?(6%)

$$\vec{-}$$
 • f(x, y, z) = $x^2 + y^2 - z^2$

- (a)则 grad(f) = ? (5%)
- (b)若 P 點位置為 P(1, 0, -1),則在 P 點處往哪個方向的 f 值變化率最大?其值(大小)為何?(6%)

(c)若
$$\bar{v}=2\bar{i}-\bar{j}+5\bar{k}$$
,則在 P 點往 \bar{v} 方向的 $\frac{df}{ds}=$?(或寫成 $D_{\bar{v}}f=$?)(6%)

三、(a)將下列 linear system 改寫成 AX = B 形式。並以 Gauss-Jordan 法解之。(6%)

$$x_1 + 3 x_2 - 2 x_3 = -7$$

 $4 x_1 + x_2 + 3 x_3 = 5$
 $2 x_1 - 5 x_2 + 7 x_3 = 19$

- (b)以 cofactor expansion 計算 det(A)。(5%)
- (c) rank(A) = ? rank(A|B) = ? (6%)

yy1 機械糸博士班資格考試題目

	考試科目 方式				
	工程數學	Closed Book,不可使用計算機, 共9題採計6題	Part III		
1. Solve	$\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$	$u(0,y) = 8e^{-3y}$ (17%)			

1. Solve
$$\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$$
, $u(0, y) = 8e^{-3y}$ (17%)

2. Find Fourier series of the following function. (17%)

$$f(x) = \begin{cases} -k & \text{if } -2 < x < 0 \\ k & \text{if } 0 < x < 2 \end{cases} \quad p = 2L = -4, \ L = 2$$

- 3. For the following questions, try to explain and show that you fully understand their meanings and applications. (17%)
 - (a) Fourier series. Why use Fourier series? (5%)
 - (b) Complex Fourier series? Why use it? (5%)
 - (c) What is Fourier integral? What is Fourier transforms? (7%)