1. Solve
$$y'' + 2y' + y = 2x \sin x$$
 (17%)

2. Solve the following differential equation: (17%)
$$(x^3D^3 - x^2D^2 - 7xD + 16I)y = 9x \ln x$$

3. Find a general solution of: (17%)
$$y' = \begin{bmatrix} -3 & 1 \\ 1 & -3 \end{bmatrix} y + \begin{bmatrix} -6 \\ 2 \end{bmatrix} e^{-2t}$$

Note: Laplace Transform (For your reference only, if you prefer to use it.)

f(t)	1	T	eat	te ^{at}	sin(ωt)	u(t-a)
L (f)	1/s	$1/s^2$	1/(s-a)	$1/(s-a)^2$	$\omega/(s^2+\omega^2)$	e ^{-as} /s

$$L(f') = sL(f) - f(0)$$

 $L(f'') = s^2 L(f) - sf(0) - f'(0)$

Linear Algebra and Vector Calculus (Part II)

Evaluate the integral $I = \int_C (3x^2 dx + 2yz dy + y^2 dz)$ if C has the initial point A: (0, 1, 2) and terminal point B: (1, -1, 7). (Hint: By the Potential Theorem) (17%)

Find the inverse A^{-1} of (17%)

$$\mathbf{A} = \begin{bmatrix} 2 & 0 & 1 \\ -2 & 3 & 4 \\ -5 & 5 & 6 \end{bmatrix}$$

Find the eigenvalues and eigenvectors of the matrix (17%)

$$\mathbf{A} = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$

博士班資格考 工程數學 (C卷)

1. (17%) Solve the following partial differential equation for u(x, t) first and then plot the distribution of u(x, t) vs. x at different t's.

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \quad (0 < x < L, \quad 0 < t < \infty);$$
BCs: $u(0,t) = 0, \quad u(L,t) = 100, \quad (0 < t < \infty).$

IC:
$$u(x,0) = 0$$
.

- 2. (a) (10%) Find the Fourier cosine and Fourier sine transforms of $f(x) = e^{-ax}$ (a > 0) and then (b) (7%) find the Fourier transform of $f(x) = e^{-ax}$ if x > 0 and f(x) = 0 if x < 0; here a > 0.
- 3. Solve the following partial different equations for u(x, y).

(a)
$$\frac{\partial u}{\partial y} + u = e^{xy}$$
 (9%)

(b)
$$\frac{\partial^2 u}{\partial y^2} = u$$
 (8%)