十萬士到主资格考流为A、10-7-09

The velocity distribution for laminar flow between parallel plates is given by

$$\frac{u}{u_{\text{max}}} = 1 - \left(\frac{2y}{h}\right)^2$$

(10%)

where h is the distance separating the plates and the origin is placed midway between the plates. Consider flow of water at 15°C with maximum speed of 0.05 m/s and h=5 mm. Calculate the force on a 0.3 m² section of the lower plate and give its direction.

N=1.2.103 N-50/m2

(10%)

Consider the flow field given by $\vec{V} = ax^2y\hat{i} - by\hat{j} + cz^2\hat{k}$, where $a = 1 \text{ m}^{-2} \cdot \text{s}^{-1}$, $b = 3 \text{ s}^{-1}$, and $c = 2 \text{ m}^{-1} \cdot \text{s}^{-1}$. Determine (a) the number of dimensions of the flow, (b) if it is a possible incompressible flow, and (c) the acceleration of a fluid particle at point (x, y, z) = (3, 1, 2).

Standard air mine wheth

Standard air enters a 0.3 m diameter duct. The volume flow rate is 2 m³/min. Determine whether the flow is laminar or turbulent. $(Q=1.2 \text{ Res/m}^3)$ $(M=1.82 \times 10^5 \text{ m}^2)$

4. Laminar Boundary Layer, Bkrsiys

Equation, 2 + + + + = 0,

Equation, 2 + + + + = 0,

H # solution (古意), 就
① boundary layer thickness = 8,
② wall shear stress = Tw,
③ Shin friction wellicient = Ct,

@ dray ≥D,

图本科 红,

Table The Function $f(\eta)$ for the Laminar Boundary Layer along a Flat Plate at Zero Incidence

$\eta = y \sqrt{\frac{U}{vx}}$	f	$f' = \frac{u}{U}$	f''
Ó	0	0 /	0.3321
0.5	0.0415	0.1659	0.3309
1.0	0.1656	0.3298	0.3230
1.5	0.3701	0.4868	0.3026
2.0	0.6500	0.6298	0.2668
2.5	0.9963	0.7513	0.2174
3.0	1.3968	0.8460	0.1614
3.5	1.8377	0.9130	0.1078
4.0	2.3057	0.9555	0.0642
4.5	2.7901	0.9795	0.0340
5.0	3.2833	0.9915	0.0159
5.5	3.7806	0.9969	0.0066
6.0	4.2796	0.9990	0.0024
6.5	4.7793	0.9997	0.0008
7.0	5.2792	0.9999	0.0002
7.5	5.7792	1.0000	0.0001
8.0	6.2792	1.0000	0.0000

世中からtream function, D=Rinematic Viscosity) レニチャで stream velocity, U=fluid velocity

(50%)

Fluid Mechanics Qualify Exam (part II) 2009/10

- (1) What is the "vortex"? Please write down the expression of velocity potential and stream function for the vortex motion. Also explain the difference between free vortex and forced vortex. (15%)
- (1) Please use Navier-Stokes equations (cylindrical coordinates) to derive the expression for the axial velocity for the flow through a horizontal circular tube with radius R. (assume the flow is parallel to the walls so that v = w = 0) (15%)
- (2) The pressure drop needed to force water through a horizontal 1-in. diameter pipe is 0.6 psi for every 12-ft length of pipe. Determine the shear stress on the pipe wall. Determine the shear stress at distance 0.3 and 0.5 in. away from the pipe wall. (20%)