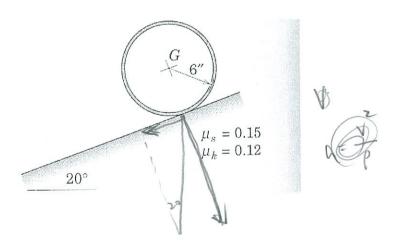

1. For the structure and loading as shown, determine (a) the value of  $\alpha$  for which the tension in cable BC is as small as possible, (b) the corresponding value of the tension. (25%)




2. For the frame and loading shown, determine the components of the forces acting on member ABC at B and C. (25%)



1. The 10-kg double wheel with radius of gyration of 125 mm about O is connected to the spring of stiffness k = 600 N/m by a cord which is wrapped securely around the inner hub. If the wheel is released from rest on the incline with the spring stretched 225 mm, determine the velocity v of its center O when O moves 0.1 m. The wheel rolls without sleeping.



2. A metal hoop with a radius r = 6 in is released from rest on the  $20^{\circ}$  incline. If the coefficient of static and kinetic friction are  $\mu_s = 0.15$  and  $\mu_k = 0.12$ , determine (a) whether the hoop slips, (b) the angular acceleration of the hoop and (c) the time for the hoop to move a distance of 10 ft down the incline.



## Vibration Theory (962 Ph.D. Qualification)

To the following questions, please give the necessary statements, equations, drawings, or explanations, whatever you think that may enhance the understanding of your answers.

- 1. Please explain the difference between Impulse Response Function and Frequency Response Function. (Source: 王栢村,<u>振動學</u>,2001,頁4-32)(10%)
- 2. In addition to the rugged design and small sizes of accelerometers, what are the important considerations in the design of accelerometers? (Source: 王 栢村,振動學, 2001, 頁 3-40) (10%)
- 3. Explain or demonstrate how to obtain the modal equations of continuous systems. (Source: Meirovitch, L., *Principles and Techniques of Vibrations*, 1997, pp. 469-470, 483) (10%)
- 4. Explain how to obtain the <u>complete</u> vibration response of a linear time-invariant system subject to arbitrary excitations. (Source: Meirovitch, L., *Principles and Techniques of Vibrations*, 1997, pp.126-129) (10%)
- 5. We can use Assumed-Mode Summation method (or called Assumed-Modes Method) to discretize a distributed system. What is the Assumed-Mode Summation method and how to use it? Is there anything that we should be careful when using this method? (Source: Thomson, W. T. and Dahleh, M. D., *Theory of Vibration with Application*, 5<sup>th</sup> ed. 1998, pp. 216-218. Also, Meirovitch, L., *Principles and Techniques of Vibrations*, 1997, pp.542-543) (10%)