Engineering Mathematics

PhD Candidate Qualification Examination

Institute of Mechanical Engineering, Yuan Ze University

Apr. 2002

Part I (Ordinary Differential Equation and Laplace Transform)

1. Solve the ordinary differential equation

$$y'' + 4y = x^2 \sin 2x$$
 (17%)

2.Using the Laplace transform, solve the following problem

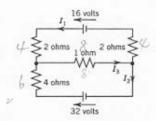
$$F(t) = \sin t$$
 if $0 < t < \pi$ and $F(t) = 0$ if $\pi < t < 2\pi$;
and $F(t+2\pi)=F(t)$, find the $L(F(t))$ (17%)

3.Using the inverse Laplace transform, find the

$$L^{-1}\left\{\frac{1}{s^{3}(s^{2}+1)}\right\} \tag{17\%}$$

(每題17分)

 Using Kirchhoff's laws, find the currents in the following networks by Cramer's rule and Gauss elimination.



5. A small body B moves on a disk toward the edge, its position vector being $\vec{r}(t) = t\vec{b}$. The disk is rotating counterclockwise with constant angular speed $\omega = 1$, and \vec{b} is a unit vector rotating with the disk. Find the tangential acceleration \vec{a}_{tan} and normal acceleration \vec{a}_{norm} of B.

ata = a.v. v

6. Consider the motion of a compressible fluid in a region R having no sources or sinks in R. If the flow through a small rectangular box W of dimensions Δx , Δy , Δz with edges parallel to the coordinate axes. W has the volume $\Delta V = \Delta x \Delta y \Delta z$. Let $\vec{v} = \left[v_1, v_2, v_3\right] = v_1 \vec{i} + v_2 \vec{j} + v_3 \vec{k}$ be the velocity vector of the motion. Assume \vec{v} is continuously differentiable vector functions of x, y, z, and t. Please derive the continuity equation of a compressible fluid flow $\frac{\partial \rho}{\partial t} + div(\rho \vec{v}) = 0$.

7. The general expression of the Fourier transform of f(x) is in the following: (17%)

$$\hat{f}(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-\alpha x} dx$$

Please explain the following question and find the Fourier transform of the following function f(x)

- (a) What are the differences of the Laplace transform and Fourier transform? And, why did we need to learn the Fourier transform?
- (b) $f(x) = e^{-2x}$ if x > 0 and f(x) = 0 otherwise.
- Please explain the following question and find the partial differential equation.
 (17%)
 - (a) What kinds of problems lead to ordinary differential equations and to partial differential equations?
 - (b) Find a solution u(x, y) of the partial differential equation $u_{xx} u = 0$.
- The heat equation as shown in equation (1) which gives the temperature u(x, y, z, t) in a body of homogeneous material. (17%)

$$\frac{\partial u}{\partial t} = c^2 \nabla^2 u$$
, where $c^2 = \frac{k}{\sigma \rho}$ (1)

Here c^2 is the thermal diffusively, k the thermal conductivity, σ the specific heat, and ρ the density of the material of the body. $\nabla^2 u$ is the Laplacian of u, and with respect to Cartesian coordinates x, y, z.

As an important application, let us first consider the temperature in a long thin bar or wire of constant cross section and homogeneous material, which is oriented along the x-axis (as shown in Fig. 1) and is perfectly insulated laterally, so that heat flows in the x-direction only.

Fig. 1 Bar under consideration

Then u depends only on x and time t, and the heat equation becomes the

one-dimensional heat equation as shown in equation (2).

$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2} \tag{2}$$

We shall solve (2) for some important types of boundary and initial conditions. We begin with the case in which the ends x = 0 and x = L of the bar are kept at temperature zero, so that we have the boundary conditions in the following equation.

$$u(0, t) = 0, u(L, t) = 0 \text{ for all } t,$$
 (3)

and the initial temperature in the bar at time t = 0 is f(x), so that we have the initial condition in the following equation.

$$u(x, 0) = f(x) \tag{4}$$

We can solve the entire problem in the following equations.

$$u(x,t) = \sum_{n=1}^{\infty} u_n(x,t) = \sum_{n=1}^{\infty} B_n \sin \frac{n\pi x}{L} e^{-\lambda_n^2 t} \text{ (where } \lambda_n = \frac{cn\pi}{L} \text{)}$$
 (5)

$$B_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx \qquad \text{(where } n=1, 2, \dots)$$
 (6)

Here is the question: Please find the temperature u(x,t) in a laterally insulated copper bar 100 cm long if the initial temperature is $200\sin(5\pi x/100)^{\circ}C$ and the ends are kept at $0^{\circ}C$. How long will it take for the maximum temperature in the bar to drop to $80^{\circ}C$? Physical data for copper: density $8.92\,gm/cm^3$, specific heat $0.092\,cal/(gm^{\circ}C)$, thermal conductivity $0.95\,cal/(cm\,sec^{\circ}C)$.