

Ph. D. Qualified Examine

計算固力

Oct. 2, 1999

1. Consider a material undergoing a uniformly large deformation as shown, determine the displacement field and strain tensor.

2. Two concentric cylinders as shown, the nominal internal and external radii are R_1 , R_2 and R_2 , R_3 , respectively. There is a small interference of δ between the interfacial radii before compounding. The elastic properties of the inner cylinder are E_1 , v_1 , and the outer cylinder are E_2 , v_2 . Determine the stress fields in the two cylinders and the pressure on the interface.

3. Consider a rectangular element as shown. Assume plane strain condition, $E = 30 \times 10^6 \, psi$, v = 0.3 and nodal displacement $q_1 = q_2 = q_7 = q_8 = 0$, $q_3 = 0.002$, $q_4 = 0.003$, $q_5 = 0.006$, $q_6 = 0.0032$, calculate the stresses at nodes 2 and 4.

4. Consider the following displacement field for the formation of a stiffness matrix for beam bending

$$v(x) = a_1 + a_2 x + a_3 x^2 + a_4 \sin(2\alpha x)$$
 where $\alpha = \pi / L$

- (a) Determine the matrix equation that relates the constants a_1 , a_2 , a_3 , a_4 to the nodal displacements and rotations at both ends of the beam element.
- (b) Derive the stiffness matrix.

