1012機械系博士班資格考試題目

考試科目	方式	
工程數學	Closed Book, 不可使用計算機,	D / T
一在数字	共9題採計6題	Part I

Ordinary Differential Equations (Part I)

Using the method of undetermined coefficients to solve the differential equation (17%)

$$y'' + 4y = 8x^2$$

Find a solution of the following equation (17%)

$$y'' - 4y' + 4y = 0$$
 with $y(0) = 3$, $\frac{dy}{dx}\Big|_{x=0} = 1$

Using the method of Laplace Transformation to solve the initial value problem of y(t) (17%)

$$y'' + 4y' + 3y = e^t$$
 with $y(0) = 0$, $\frac{dy}{dt}\Big|_{t=0} = 2$

1012機械系博士班資格考試題目

考試科目	方式	
工程數學	Closed Book, 不可使用計算機, 共 9 題採計 6 題	Part II

1. $A = \begin{bmatrix} 6 & -3 \\ 4 & -1 \end{bmatrix}$, (a) Find the eigenvalues and eigenvectors of A; (b) Find A^{100} ; (c) Solve the following system of differential equations by using the result of (a). (6%, 5%, 6%) \circ

$$X' = \begin{bmatrix} 6 & -3 \\ 4 & -1 \end{bmatrix} X \text{ where } X = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

- 2. If $f(x, y, z) = 50 \text{ xy} + x z^2$, then (a) what is the value of $\frac{df}{ds}$ at the point (1, 0, -2) and in the direction (1, 0, 2)? (b) What is the maximum value of the derivative $\frac{df}{ds}$ at the same point (1, 0, -2) and in which direction does the maximum derivative occur? (9%, 8%)
- 3. Evaluate $\iint_s (\vec{F} \cdot \vec{n}) dA$ when $\vec{F} = [x^2, y^2, xy]$ and S is the portion of the plane x + 2y + 3z = 1 in the first octant. (17%)

1012 機械系博士班資格考試題目

考試科目	方式	
工程數學	Closed Book, 不可使用計算機,	Part
	共9題採計6題	III

1. Solve
$$\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$$
, $u(0, y) = 8e^{-3y}$. (17%)

2. Expand f(x) = x, 0 < x < 2 in a half range (a) sine series, (b) cosine series. (17%)

3. Find the Fourier integral representation of the function. (17%)

$$f(x) = \begin{cases} 1 & \text{if } |x| < 1 \\ 0 & \text{if } |x| > 1 \end{cases}$$