1011 機械系博士班資格考試題目

考試科目	方式	
工程數學	Closed Book, 不可使用計算機,	Part I
	共9題採計6題	

1. Using the method of variation of parameters to solve the differential equation (17%)

$$y'' + y = \sec x$$

2. Find a solution of the following equation (17%)

$$y'' + y' - 2y = 0$$
 with $y(0) = 4$, $\frac{dy}{dx}\Big|_{x=0} = -5$

3. Using the method of Laplace Transformation to solve the initial value problem of y(t) (17%)

$$y'' + 2y' + y = e^{-t}$$
 with $y(0) = -1$, $\frac{dy}{dt}\Big|_{t=0} = 1$

1011機械系博士班資格考試題目

考試科目	方式	
工程數學	Closed Book, 不可使用計算機, 共9題採計6題	Part II

1. (a) $A = \begin{pmatrix} 4 & 2 \\ 3 & 3 \end{pmatrix}$, diagonalize A. (b) Solve the following system of differential equations by using the result of (a). (8%, 9%) \circ

$$X' = \begin{pmatrix} 4 & 2 \\ 3 & 3 \end{pmatrix} X$$
 where $X = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}$

- 2. What is the divergence theorem (i.e., Gauss theorem)? Verify the divergence theorem for $\vec{F} = [x, y, z]$, and D is the sphere of $x^2 + y^2 + z^2 = 9$. (5%, 12%)
- 3. Using Stokes's theorem, evaluate $\oint_C zdx + xdy + ydz$ where C is the trace of the cylinder $x^2 + y^2 = 1$ in the plane y + z = 2. Orient C counterclockwise as viewed from above. (17%)

1011機械系博士班資格考試題目

考試科目	方式	
工程數學	Closed Book, 不可使用計算機,	Part
	共9題採計6題	III

- 1. Solve $u_x + 3u_y = 0$ (17%)
- 2. For an elastic string of length L, fastened at its ends on the x-axis at x=0 and x=L. The string is displaced with the initial displacement f(x) as shown. Then it is released from test to vibrate in the x-y plane. Following the step by step instructions below, find the model for this kind of wave equations in PDE. Where $\rho = \text{mass/per unit length}$, $c^2 = \frac{T}{\rho}$ (17%)

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

- (a) List the force equilibrium in horizontal x-direction.
- (b) List the force equilibrium in vertical direction by Newton's 2^{nd} law. i.e. $\sum F = ma$

$$T_2 \sin \beta - \underline{\hspace{1cm}} = \text{ma} = \rho \Delta x \frac{\partial^2 u}{\partial}$$

(c) Divide those equations as above in (a) by (b), you can obtain

$$\Rightarrow \frac{T_2 \sin \beta}{T_2 \cos \beta} - \frac{???}{T_1???} = \tan \beta - ??? = \frac{\rho \Delta x}{T} \frac{\partial^2 u}{\partial ?}$$

(d) The slope at x and $x + \Delta x$, $= \left(\frac{\partial u}{\partial x}\right)_x$ and $= \left(\frac{\partial u}{\partial x}\right)_{x+\Delta x}$ substitute into (c) for

terms on the right. You can get the partial differential equation.

3. Expand the following function by Fourier series. (17%) $f(x) = \begin{cases} x, & 0 \le x \le \frac{L}{2} \\ L - x, & \frac{1}{2} < x \le L \end{cases}$

