1002 機械系博士班資格考試題目

考試科目	方式	
工程數學	Closed Book,不可使用計算機,	Part I
	共9題採計6題	

1. Using the method of undetermined coefficients to solve the differential equation (17%)

$$y'' - 3y' + 2y = e^x$$

2. Find a solution of the following equation (17%)

$$y'' + y' - 2y = 0$$
 with $y(0) = 4$, $\frac{dy}{dx}\Big|_{x=0} = -5$

3. Using the method of Laplace Transformation to solve the initial value problem of y(t) (17%)

$$y'' - y = t$$
 with $y(0) = 1$, $\frac{dy}{dt}\Big|_{t=0} = 1$

1002 機械系博士班資格考試題目

考試科目	方式	
工程數學	Closed Book,不可使用計算機, 共9題採計6題	Part II

1. (a) Determine the inverse A⁻¹ by the method of Gauss-Jordan method. (10%)

$$\mathbf{A} = \begin{bmatrix} -1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4 \end{bmatrix}$$

- (b) Prove $(AB)^{-1} = B^{-1} A^{-1}$ for any nonsingular matrices A and B. (7%)
- 2. (a) Show that the line integral $\int_C \vec{F} \cdot d\vec{r}$ is path independent in any domain in space, where $\vec{F} = 2x\vec{i} + 2y\vec{j} + 4z\vec{k}$. (9%)
 - (b) Evaluate the line integral of (a) by direct integration along C: $\vec{r}(t) = [t, t, t]$, $0 \le t \le 2$. (8%)

$$3. \mathbf{A} = \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix}$$

- (a) Find the eigenvalues and eigenvectors of A. (7%)
- (b) Solve the following system of ODEs by using the results of (a). (10%)

$$\vec{y}'' = A\vec{y}$$
 where $\vec{y} = \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix}$

1002機械系博士班資格考試題目

考試科目	方式	
工程數學	Closed Book,不可使用計算機, 共9題採計6題	Part III

1. Solve
$$\frac{\partial^2 u}{\partial x^2} + 4 \frac{\partial^2 u}{\partial y^2} = 0$$
 (17%)

- 2. Fourier integral representation of a function. (17%)
 - (a) What is Fourier integral? When to use it? (5%)
 - (b) Solve for the Fourier integral of $f(x) = \begin{cases} 1, & \text{if } 0 < x < a \\ 0, & \text{if } x > a \end{cases}$ (12%)

3. Find the steady state oscillations of the following forced oscillations under a non-sinusoidal periodic driving force. Following the step by step instructions below. (17%)

$$y'' + \omega^2 y = r(t)$$

with $r(t)$ as given

$$r(t) = \begin{cases} t + \pi & \text{if } -\pi < t < 0 \\ -t + \pi & \text{if } 0 < t < \pi \end{cases} \qquad r(t + 2\pi) = r(t), \ |\omega| \neq 0, 1, 3, 5, \cdots$$

- (a) Sketch r(t) ? (3%)
- (b) Represent r(t) by a Fourier series? (5%)
- (c) Solve the problem by taking the corresponding solution format following the results of (b) just as those in solving general second order differential equations. (9%)